

Calcium antimonate precipitation in cementituous systems

Geert Cornelis, Tom Van Gerven, <u>Carlo Vandecasteele</u> Laboratory of Applied Physical Chemistry and Environmental Technology, K.U.Leuven

Introduction

Wastes that contain antimony are often processed in a cementituous matrix:

- added to cement (Coal fly ash)
- replace gravel or sand in concrete production (MSWI bottom ash)
- solidified/stabilised (Hazardous wastes: MSWI or non-ferrous APC residues)
- → Sb is often found in a cementituous matrix

Although still a matter of debate, Sb is suspected to have toxic properties and is therefore regulated in many countries

Guideline	Leaching limit value (mg/kg)
EU Landfilling of non-hazardous wastes (L/S=10)	0.7
EU Landfilling of hazardous wastes (L/S=10)	5

Incomplete knowledge on Sb toxicology has lead in the EU to low limit values, even lower than those of As

Introduction

There is thus need to understand the geochemistry of antimony in alkaline matrices, but existing knowledge is limited:

- 3 different logK_{sp} values for Ca[Sb(OH)₆]₂ (-12.55, -10.23, -10.98)

- Interaction of Sb(V) with common minerals?

Limited understanding of the long-term behaviour of Sb in a cementituous or other alkaline matrix

Introduction

This presentation: Calcium antimonate precipitation

- Sb(V) most abundant and most mobile oxidation state in solution: Sb(OH)₆⁻
- Calcium antimonate most likely precipitate in a cementituous matrix

Calcium antimonate = **Roméite**

Roméite has a structure similar to pyrochlore Pyrochlore: $(Ca,Na)_2Nb_2O_6(O,OH,F)$ Roméite: $(Ca,Na)_2Sb_2O_6(O,OH,F)$

Perfect Roméite: Ca₂Sb₂O₇

Calcium antimonate = **Roméite**

General formula: $A_{2-m}B_2X_6Y_{1-n}$.pH₂O

In a CaO-Sb₂O₅-H₂O system: A=Ca B=Sb(V) X=O²⁻ Y=O²⁻, OH⁻ or H₂O

these indices indicate the possibility of vacancies

e.g. Ca₂Sb₂O₇

Calcium antimonate = Roméite

vacancies:

e.g. $Ca[Sb(OH)_6]_2 = (Ca_1[]_1)^A Sb_2{}^BO_6{}^X(H_2O)_6{}^Y$ Especially the A and Y site can contain vacancies

> Roméite has a highly variable composition

Variation in composition

The composition of pyrochlores depends on [Ca] and pH: Low pH and/or low [Ca²⁺]: → low A-site occupancy High pH and/or high [Ca²⁺]: → High A-site occupancy

Also true for roméite and what is the effect on solubility?

Variation in composition

Applied molar Ca:Sb ratio	pH during synthesis	Aging time	Structure (Rietveld)	
1:2	~6	24h	Amorphous	
1:2	~6	60d	Pyrochlore	
0.66:2	12	14d	Pyrochlore	
1:2	12	14d	Pyrochlore	
2:2	12	14d	Pyrochlore	
4:2	12	14d	Pyrochlore	

XRD + Rietveld fit of the roméite
synthesized at pH
12 and at a total molar Ca:Sb ratio of 1:2

Calcium antimonates obtained are indeed roméite (pyrochlore structure) except the first one which is amorphous

Applied molar Ca:Sb ratio	pH during synthesis	Aging time	Formula (Rietveld analysis)	Ca:Sb (EDX)
1:2	~6	24h	$Ca[Sb(OH)_6]_2$ (based on EDX)	0.94:2
1:2	~6	60d	Ca _{1.13} [] _{0.87} Sb ₂ O ₆ (OH) _{0.26} :0.74H ₂ O	1.16:2
0.66:2	12	14d	Ca _{1.46} [] _{0.54} Sb ₂ O ₆ (OH) _{0.92} :0.08H ₂ O	1.31:2
1:2	12	14d	Ca _{1.44} [] _{0.56} Sb ₂ O ₆ (OH) _{0.88} :0.12H ₂ O	1.36:2
2:2	12	14d	Ca _{1.55} [] _{0.45} Sb ₂ O ₆ (O _{0.10} ,(OH) _{0.90})	1.38:2
4:2	12	14d	Ca _{1.67} [] _{0.33} Sb ₂ O ₆ (O _{0.34} ,(OH) _{0.66})	1.41:2

- Products obtained show variable composition
- The molar Ca:Sb ratio of synthesis products increases as the pH and Ca:Sb ratio applied during synthesis increase
- However, Ca:Sb ratio in synthesis product increases more slowly

Solubility of roméite as a function of [Ca] (Ca_{1.13}Sb₂O₆(OH)_{0.26}:0.74H₂O, synthesized at pH~6)

Sb in equilibrium with roméite as a function of the applied [Ca] (as $Ca(NO_3)_2$)

pH in equilibrium with roméite as a function of the applied [Ca] (as $Ca(NO_3)_2$)

Model 1: congruent dissolution; equilibrium with atm. CO_{2} , formation of HCO_{3} -, and CO_{3}^{2-} and equilibria between $Sb(OH)_{6}^{-}$, $Sb(OH)_{5}$, $CaOH^{+}$, Ca^{2+} , $CaCO_{3}$, $CaHCO_{3}^{+}$ $Ca_{1.13}Sb_{2}O_{6}(OH)_{0.26}$: $0.74H_{2}O + 0.26H^{+} + 5H_{2}O = 1.13Ca^{2+} + 2Sb(OH)_{6}^{-}$ $logK_{sp}$ =-12.7

Sb in equilibrium with roméite as a function of the applied [Ca] (as $Ca(NO_3)_2$)

pH in equilibrium with roméite as a function of the applied [Ca] (as $Ca(NO_3)_2$)

- Model 1 only adequately predicts Sb conc. in solution tion at (Ca)<0.01 mol/l
- not the observed pH decline as a function of [Ca]

Sb in equilibrium with roméite as a function of the applied [Ca] (as $Ca(NO_3)_2$)

pH in equilibrium with roméite as a function of the applied [Ca] (as $Ca(NO_3)_2$)

Model 2: Model 1 + ion association: $Ca^{2+} + Sb(OH)_6^- = CaSb(OH)_6^+$ fitted logK_{ass}=2.15

Sb in equilibrium with roméite as a function of the applied [Ca] (as $Ca(NO_3)_2$)

pH in equilibrium with roméite as a function of the applied [Ca] (as $Ca(NO_3)_2$)

- Better prediction of Sb conc. at [Ca]> 0.01mol/l. Assumption of CaSb(OH)₆⁺ assocation is likely
- Model does not predict observed pH decline as a function of [Ca]

Sb in equilibrium with roméite as a function of the applied [Ca] (as $Ca(NO_3)_2$) function of the applied [Ca] (as

pH in equilibrium with roméite as a $Ca(NO_3)_2)$

Model 3: Model 2 + precipitation of 2^{nd} romeite $Ca_2Sb_2O_7$ is allowed $Ca_2Sb_2O_7 + 2H^+ + 5H_2O = 2Ca^{2+} + 2Sb(OH)_6^$ fitted $\log K_{sp} = -6.7$

Sb in equilibrium with roméite as pH in equilibrium with roméite as a function of the applied [Ca] (as Ca(NO₃)₂) a function of the applied [Ca] (as Ca(NO₃)₂)

- Model 3 explains the Sb conc. in solution and the pH-decline: as [Ca] increases Ca_{1.13}Sb₂O₆(OH)_{0.26}:0.74H₂O dissolves in favour of Ca₂Sb₂O₇ and more H⁺ is set free
- However, a fitted $\log K_{sp}$ =-6.7 for $Ca_2Sb_2O_7$ was not yet confirmed experimentally

- OPC paste spiked with 300 mg/kg Sb(V)
- 28 days hydration
- Leaching of Sb as a function of pH: max. at pH=7, min. at pH=13

- Modelling with PHREEQC
- Ca[Sb(OH)₆]₂ logK_{sp}=-12.55 (Johnson et al., 2005)
- Overestimation of Sb leaching at high pH
- Leaching close to equilibrium with Ca[Sb(OH)₆]₂ at pH<9

At pH>11 concentration of Sb is close to equilibrium with Ca_{1.13}Sb₂O₆(OH)_{0.26}:0.74H₂O
Sb leaching at 9<pH<11?

- A site occupancy of romeites decreases with pH
- Romeites with lower A-site occupancy cause higher Sb concentrations

Conclusions

- Calcium antimonate = roméite that equilibrates with pore solutions by 3 simultaneously occuring equilibria:
 - Dissolution
 - Change of the A-site (and Y-site) occupancy as a function of pH and Ca-activity
 - CaSb(OH)₆⁺ formation